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ABSTRACT

The original coherent lightwave systems were expected to offer

significant performance gains relative to standard direct detection

systems. This expectation has not been realized due to the effects of

laser phase noise. The laser phase noise process results in the

integration of a i-andom variable that transitions over the integration

period from a Gaussian distribution to a uniform distribution. The use

of convolutional coding effectively replaces a single bit time, with its

mostly noncoherently integrating latter portion, by several more

coherently integrating bits. This primary bit-time effect comes in

addition to the normal coding effect of efficiently trading bandwidth for

error performance. The improvement in performance brought about

from coding may enable coherent systems to live up to previous

expectations.

The contributions of this thesis include the visualization of the

phase noise process, the efficient computation of the laser phase noise

power factor probability density function, and the computation of

performance curves for uncoded and coded systems. Additional sections

on coherent lightwave systems and coding provide tutorial information.

A potential military application is discussed, along with practical

implementation issues.
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I. INTRODUCTION

Optical communications links have become the preferred channels

for high data rate applications for many reasons. A single fiber can

support the bandwidth of hundreds of coaxial cables; fibers are immune

from radio frequency interference; damage to fiber cables is easily

locatpd; fiber is lower in weight than metal cables. As fiber cables have

become more rugged, their use in military systems has become more

practical. Fiber is now being proposed for guided weapon data links,

battlefield communication networks, and sensor systems.

The current commercial state of the art is direct detection. Direct

detection lightwave systems are similar in concept to A.M. radio, in that

the process of detecting the signal makes no use of the signal phase. In

essence, the signals consist of pulses of noise energy, with a bit "1"

represented by a pulse of energy, and a bit "0" represented by no signal.

The preferred channel of propagation is single mode fiber. Fibers are

cylindrical waveguides subject to the same physical laws as microwave

waveguides. The term "single-mode" refers to the support of only one

propagating mode. This eliminates dispersion due to intermodal mixing.

Fibers are subject to attenuation, which is logarithmic with distance.

Fibers also suffer from chromatic dispersion, where the spectral

components of the source's non zero linewidth travel at different

velocities through the waveguide material. Chromatic dispersion effects

are reduced through the use of laser diodes with small linewidths.
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Attenuation is reduced through the formulation of fiber materials and

strict elimination of water and OH- molecules from the fiber during

manufacturing.

Improved performance is theoretically possible using coherent

systems. In a coherent system receiver, the source light signal is

optically mixed with a local oscillator optical signal, resulting in an

electronic intermediate frequency signal. The electronic IF signal is

processed the same way as in a microwave coherent communication

system. The source and local oscillator lasers must be carefully

controlled to maintain an IF signal compatible with the demodulator.

This makes coherent systems more complicated than direct detection

systems. Coherent receivers show significant sensitivity improvements

(up to 20 dB) as compared to standard direct detection systems.

A. THE PROBLEM, HISTORY, AND THIS THESIS

The significant barrier to the use of coherent systems is the

presence of phase noise in the source laser and in the receiver local

oscillator laser. The phase noise results in source linewidth broadening.

The nature of phase noise is such that its effects decrease with

increasing data rates. The commercial implementation of coherent

systems awaits the development of laser sources with small linewidth

and rapid modulation capability.

The effects of phase noise became known after early experiments in

coherent systems resulted in dismal performance. One of the first

comprehensive papers on the nature of phase noise was published by

2



Salz in 1985 (Salz, 1985). The significant obstacle to quantifying the

effects of phase noise is the determination of the probability density

function for the phase noise process. Approximations to the density

were put forth in a series of papers by Foschini, Greenstein and

Vannucci, (Foschini, Greenstein, and Vannucci, 1988; and Foschini and

Vannucci, 1988). Azizoglu and Humblet (Azizoglu and Humblet, 1991)

refined the earlier treatment, and demonstrated how multisampling

receivers can combat the effects of phase noise. Since multisampling is

equivalent to diversity, and since diversity is equivalent to simple

repetition coding, it makes sense that the application of more efficient

forms of coding can provide greater benefits than diversity.

This thesis is about the application of convolutional coding to

binary frequency shift keying (2FSK) coherent lightwave systems with

noncoherent detection. It is shown that coding offers significant

improvements in error performance for a given data rate.

B. CHOICES, TRADEOFFS, AND COSTS

The choice of noncoherent detection is driven by the more relaxed

linewidth requirements for this type of system. With the choice of

noncoherent detection, the possible modulation formats are on-off

keying (OOK), and frequency shift keying (FSK). The error performance

of these two systems referenced to average bit energy to noise ratios are

the same, but the peak power required in the FSK system to achieve

equal average power is 3 dB less than that for OOK. The type of coding

considered is hard decision convolutional codes. While soft decision
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decoding offers several dB improvement, it is more complicated and

requires a decoder that is more difficult to implement at high signal

rates.

The pha*. oise cfect decreases with data rate, and it will be shown

that for uncodeti systems, the drop in bit energy from an increase in

data rate is generally more than offset by the drop in phase noise effect.

Practical systems are limited in signal rate; it is not always possible to

increase coding gain without encountering this signal rate limit. This

means that there will be tradeoffs between increasing data rate and

employing coding. The requirements placed on the system must be

stated in terms of required data rate, limits on signal rate, and error

performance. In many circumstances, employing coding will be

beneficial, in others, it may not.

The tradeoff options mount when the ability to frequency multiplex

coherent systems within common channels is considered. Now, several

lower data rate coded channels may be multiplexed, providing the data

rate of a single uncoded channel, at lower total power (but greater

complexity). The error performance curves presented in this thesis can

be utilized to conduct tradeoff studies between single channel and

multiplexed systems.

The cost of implementing coding may be very small. For

convolutional coding, the encoders are very simple. The decoders are

somewhat more complicated. The Viterbi decoders are well suited to

implementation as apphcation specific integrated circuits (ASICs).

Several companies advertise decoders for low data rates (10 Mbps) for
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$25 per chip. The fastest available Viterbi decoder is a hard decision

system capable of operating at signal rates of 200 Mbps (NASA, 1993).

The capabilities of decoders will increase as logic speeds increase and

parallel architectures are exploited.

C. THESIS OUTLINE

The outline of the thesis is as follows. The first sc :tion provides

background information of a tutorial nature on optical communication

systems, and the phase noise process. The next section develops the

effects of phase noise on uncoded 2FSK systems with noncoherent

detection. New contributions in this area include the visualization ot the

phase noise process, and the efficient computation of the probability

density function from its approximate moments. The next section

begins with tutorial material on convolutional coding, and then develops

the error performance for coded systems using several simple codes.

The concluding section considers a hypothetical coded coherent system

and compares it to a conventional direct detection implementation. An

appendix contains computer codes of the probability density function

(pdf) computation and code transfer function determination for the

Mathematica computer algebra system.
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II. OPTIC`.L COMMUNICATION SYSTEMS

Lightwe.,•e 3ystems may be broadly classified as noncoherent

systen- or coherent systems.

A. NONCOHERENT SYSTEMS

In a noncoherent system (Figure 2.1), a source laser is intensity

modulated, the resulting optical signal is sent over multimode or single

mode fiber cables, or propagated through free space. Fiber optic cables

are cylindrical waveguides, and thus light propagates under the same

physical laws as apply to microwave waveguides, i.e., the waveguide can

propagate either single or multiple modes. Multiple mode fibers are

affected by the interactions between the modes, causing modal

dispersion, which widens the spectrum of transmitted light. The longer

the cable, the more severe the modal dispersion becomes, leading to

performance degradation. Obviously, a single mode fiber does not suffer

from modal dispersion. Another form of dispersion that all fibers suffer

from is chromatic dispersion, where different frequencies travel at

different velocities due to a non constant index of refraction. The

solution to this problem is to use a source with as small a linewidth as

possible.
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Figure 2.1 Noncoherent Lightwave System

When employing wide linewidth sources (like LED's) over multimode

fibers, the maximum link distance is on the order of 10 Km (Keiser,

1991). At the receiver, the intensity modulated signal power is directly

detected by a photodiode, generating a voltage proportional to received

optical power plus noise. The similarity between nencoherent lightwave

systems and a crystal A.M. radio are now clear. Advantages of

noncoherent systems include simplicity, and the ability to use relatively

noncoherent light sources such as light emitting diodes, as opposed to

more coherent, more complicated, and more costly laser diodes. The

disadvantages of noncoherent systems are difficulties in multiplexing

multiple signals on multiple lightwave frequencies, and inferior error

and inferior repeaterless range compared to coherent systems.
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B. COHERENT SYSTEMS

Coherent lightwave systems (Figure 2.2) employ a spectrally very

pure source laser, and single mode propagation channels. The spectral

widening through a multimode fiber would be intolerable in a coherent

system, so current systems employ single mode fibers. Free space, low

dispersion propagation is also possible. At the receiver, the incoming

laser light is first mixed with a local oscillator laser (Figure 2.3). When

the mixing is to baseband, the process is termed homodyne detection.

When the mixing is to an intermediate frequency, it is termed

heterodyne detection. The detection and decision process is now carried

out electronically, exactly as in a coherent microwave communication

system. Coherent systems show up to 20 dB better receiver sensitivity

compared to noncoherent systems (Keiser, 1991), and also a high degree

of frequency selectivity. The repeaterless range of coherent systems is

on the order of lOf1 Km. Figure 2.4 shows how a large number of

channels (assuming 10 GHz channel spacing) can theoretically be fit into

the windows of low fiber attenuation available with current optical

fibers. Further information on fiber optic systems can be found in

(Keiser, 1991).

The nature of coherent systems demands close control over the

frequencies of source and local lasers, which adds complexity to

coherent systems. The frequency of current laser diodes is affected by

the laser temperature, and the drive current. Modulating the drive

current is one method to impart frequency modulation on the source

laser. Typical sensitivities of a laser are 10-20 GHz/°C temperature and
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1-5 GHz/mA drive current. Since the intermediate frequency is usually

m the MHz range, slight deviations in temperature or drive current in

source or local lasers can cause trouble.

Coherent F c

Input Inal I F
InfUml'Iation (oberent Optical igna e lin

Laser 1e Spceeren
Source

F%K

Prnragati,inPSK Channel

ASK

Figure 2.2 Coherent Heterodyne Lightwave System

/\J/\j'\j.4. 'f& photodetector Pass intermediate

Figure 2.3 Heterodyne Optical Receiver

C. OPTICAL RECEIVERS

A heterodyne optical receiver is shown in Figure 2.3. In this

receiver, the incoming source signal is projected onto the photodetector
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Figure 2.4 Fiber channel capacity assuming 10 GHz channel spacing

surface. A local oscillator laser is optically mixed via a mirror onto the

photodetector. Denote the source signal field by

Er = A,(t)cos[27frt + 0,(t)] (2.1)

where f, is the carrier frequency of the source laser, 0r(t) is the source

laser phase, and A,(t) is the envelope. The polarization angle between

the two beams is 0(t). Likewise, the local oscillator laser field is

El = A, cos[27rfit + O,(t)] (2.2)

where f, is the local frequency, 6O(t) is the local phase, and A, is the

(constant) local envelope. The photodetector responds to the combined

fields of {r(t) + I(t)} with intensity

I,(t) I AA(t) + I A 2 + A,(t)A, cos[27r(f, - fl)+ Or(t)0+ ,(,cos0(t) (2.3)
212
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The output of the photodetector therefore has an intermediate

frequency term at f, - f,. The term at fr + f, has been discarded in (2.3).

The intermediate frequency power at the photodetector will be

P,(t) = 2ýP--Pl cos[27r(f, - fl)t + 0, (0)- e, (01]cos 0(t) (2.4)

A noncoherent, direct detection system responds only to the power

of the incoming signal, with an intensity of

Idd1(0 =IAý(t)[1 + cos(4rfrt + 2e (t))] (2.5)

The double frequency term will normally be outside the photodetector's

response. The power at the photodetector will be

Pdd(t) = P, (2.6)

To determine why coherent systems offer superior performance,

the quantum performance of a photodetector must be considered. A

photodetector requires a certain number NP of photons to fall on the

detector to produce a single electron. For an ideal detector, N,, = 1. The

reciprocal of Np, is called the quantum efficiency of the detector, and is

denoted by ij. The current produced by M photons/sec is i = Milq, where

q is the electron charge. Each photon of light has energy hf where h is

Planck's constant, and f is the light frequency. Therefore, the incident

power P = Mfh and i = rlqP/hf. As the number of photons falling on the

photodetector becomes small, the discrete nature of the photon to

electron conversion events leads to a fluctuation in the output current

that becomes more severe as the number of photons falling on the

11



detector decreases. This is a noise process, and is called shot noise. For

a signal bandwidth b, the shot noise process has power (DeLange, 1968)

N, = 2q 2?lbP R (2.7)
hf

The signal power is i2R, so the signal to shot noise ratio is

S _iR _ iP(2.8)
N N, 2hfb

The above analysis is simplified, in that noise components resulting

from dark currents and thermal noise are not included, A more

complete analysis may be found in (Keiser, 1991).

Comparing (2.4), (2.6), and (2.8) reveals the superiority of coherent

systems. Since the local oscillator power carries the signal modulation,

the photodetector may work at much higher signal to noise ratios.

Currently, coherent receivers achieve at least 10 dB better sensitivity for

a given SNR than noncoherent receivers.

D. DEMODULATORS

Coherent heterodyne lightwave systems are further classified as to

the processing at IF. In coherent demodulation, the phase of the local

oscillator (within the detector, not the local oscillator laser) is matched

precisely to that of the IF signal via a phase locking technique. A

coherent 2FSK system is depicted in Figure 2.5. In this figure, the

incoming and local oscillators have equal phase 0(t), and the input signal

is contaminated by noise n(t). The coherent system is the optimum

approach when the phase of the source and local lasers is known and

12



stable. Unfortunately, stable phase is difficult and costly to achieve.

The alternative, which costs 3 dB in theoretical signal to noise ratio, is to

use noncoherent demodulation (Figure 2.6). In this scheme, the phase of

the IF signal is irrelevant, since both inphase and quadrature

components of the detection process are squared and added.

Fluctuation in the source laser and laser local oscillator phase (phase

noise) causes fluctuation in the IF phase and still degrades the

performance, but the phase noise does not of itself complicate the

detection process. The noncoherent 2FSK system depicted in Figure 2.6

is the system studied in this thesis.

COS 2 Trf". t + 0O(t)l

Decision

a(Ocosf27r fj + 0()1 + n(a (Select Largest) Data

cosl2nr/;•t + 0(t))

Figure 2.5 Coherent 2FSK Demodulation
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Figure 2.6 Noncoherent 2FSK demodulator
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III. LASER PHASE NOISE

For a variety of practical reasons, the preferred devices for

commercial and military applications of fiber optic communications are

semiconductor injection lasers (laser diodes). It is the relative spectral

purity of the laser diode that permits the employment of coherent

optical modulation schemes. The spectral purity is not absolute,

however. These devices are generally affected by phase noise, which

broadens the spectrum of the laser and can severely degrade

performance.

Earlier it was stated that coherent receivers enjoy a 10 dB sensitivity

advantage over direct detection systems. In practice, this advantage is

only realizable when the effects of phase noise are controlled.

Laser phase noise is caused by random spontaneous emissions

within the lasing medium. Each emission event causes a random jump

in the phase. This is a random walk process, as time progresses, the

value of the phase will wander away from where it started. The mean

squared deviation of the phase grows linearly with time. It has been

shown (Salz, 1985) that the common Lorentzian shape of the laser

spectrum is due to this phase noise process.

Since the mean time between the random jumps is infinitesimal, the

phase noise process becomes in the limit a Wiener process characterized

by a zero mean white Gaussian noise p(t) with some two sided power

spectral density No

15



0(t) = 27r P(rdT (3.1)

with

E{f(t)} { rJ z, )dr P(r 2 )d

= 4x 2 JJN 0 S(r1 -- -l)drldT 2  (3.2)

= 4z 2N ot

To determine a value for No, consider the laser emission process

s(t) = cos[27rfot + O(t) + 0] (3.3)

where p is a uniformly distributed random variable.

The power spectral density of s(t) is (Salz, 1985)

G(f) 1 1 1 (3.4)

( 7rNo ) 7, No)

This is the Lorentzian line shape shown in Figure 3.1. Denoting the half

power linewidth as 3, equation (3.4) may be solved for
No = 3  (3.5)

27r

The random phase variable e(t) is therefore a zero mean white Gaussian

process with PSD from (3.2) of 2,rfot.

16
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IV. UNCODED SYSTEM PERFORMANCE

The coherent system with noncoherent demodulation of Figure 4.1

will be considered to determine the deleterious effects of phase noise.

A. NONCOHERENT 2FSK ERROR PERFORMANCE FORMULATION

The input to the demodulator is the IF output from the optical

heterodyne receiver

r(t) = A cos[2yrfot + 0(t)] + n(t) (4.1)

It is assumed that a data 0 is transmitted. The signal is

contaminated by additive white Gaussian noise with variance N0 /2.

From (3.2) and (3.5), the phase noise 8(t) is white Gaussian with variance

27,rt. It is assumed that the frequency spread between fo and f, is large

enough to assure orthogonality.

The decision variables are
A T2y° = JA I°expljO(t)]dt + n•° + n(4.2)

Y, = ni, + jnq1 I'

where the n are independent identically distributed white Gaussian

random variables with variance NOT/4. If the phase noise integral term

is defined as

Y A = exp[jO(t) (4.3)

18
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Figure 4.1 Noncoherent Demodulator

then the probability of error conditioned on Yyields the standard

noncoherent detection problem. The density for Yo conditioned on Y is

the noncentral 'X
2 distribution

fv~jd=-1 .+e C2)10y i2 (4.4)
2a2 e 1  2a JIO a I

where 10 is the modified Bessel function of zero order, and

Ca = NoT/4.The density for Y, is the exponential density

fA, (y,) 1- exj- (4.5)

2a2  2a
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with a' NOT/4. The error probability conditioned on Ybecomes

Pr{Y , > oY(I } : e•y 2-vŽ

2 Xi a2 1(4.6)

I y21
-exip-, I

When the signal is not corrupted by phase noise, the bit error probability

is

P11 = ~exP[- 1bP 2= e 2 No (4.7)

1 F-A'T1
=- ex4 ]

where E,, /N, is the signal energy to noise ratio.

The expression for Y may be rewritten

4 exrjO(xT)dx (4.8)

4 J
A22~' exp[Jvj~(x)ix

by making the change of variable t = xT. The random variable V(x) has

EjV2(x)} = x, and y = 21rflT, where P is the combined 3 dB linewidths of

the source and local lasers and T is the bit rate. If the random variable

X(y) is defined as

X(y) = 11 exqj _rV(t)Idtl (4.9)

20



the expression for bit error conditioned on X(y) is

P11.,=Ex, exi -A oo yJJ
{ 4  } (4.10)

=Ex() exp[_ 21 E X(Y)

From (4.9), it is clear that 0 • X(y) • 1. This property indicates that

X(y) may be considered as a power fraction due to phase noise.

B. PHASE NOISE VISUALIZATION

Significant insight into the phase noise process may be obtained

from careful consideration of (4.9). It is intuitive that when the phase

angle does not wander during an integration period represented by

0 •_ x :_ 1, the integration is fully coherent, and therefore X(0) = 1. From

previous discussions, the phase angle Fyv(x) is a zero mean white

Gaussian process with a variance 2,roTx = yx that increases throughout

the integration period. The probability density for the process

Z -- (x) is

f•Z(X)] - ex -- -( <z (4.11)

A plot of the density versus phase angle and time for a generic

value of yis shown in Figure 4.2.

The phase angles of Figure 4.2 are shown in a continuous form. In

actuality, since phase angle is a Modulo-2ir process, the density function

becomes

21
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-4-r
/x

4Tr' 0

Figure 4.2 fz[z(x)]

fz[z(x)] : ex (z +2n) 7r < z < r(4.12)
n~ 2iy' L I

The density "rolls up" into the form shown in Figure 4.3. Now the impact

of phase noise becomes very evident, in that as the integration period

progresses, the density for the phase begins to approltai to uniform

density, which destroys the coherence of the integrdl ,. Finures 4.4

through 4.10 show these "rolled up" densities for a rwo wj y. As y

increases, the transition to a uniform density is more pronounced and

rapid, leading to less time for coherent integration and lower signal

power.
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Figure 4.4 f,,[z(x)] for y 1/4. The contours of the 2-D plot are at x

intervals of (2,.4,.(i,.8,1.0)
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Figure 4.7 fz[z(x)] for y = 2.
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Figure 4.8 fz[z(x)] for y = 4.
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Figure 4.10 fz[Z(X)] for 7:16.

The above intuitive interpretation provides a means to establish an

expected value of the random variable X(y). Employing (4.11), this

function, call it XE(y), may be defined as

X'Y f I fepjzfzzdzý
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A plot of XE(Y) is shown in Figure 4.11. This figure demonstrates the

degradation in signal power due to increasing phase noise.

-(10

a -2o|

2 4 6 8 10 12 14 16 18 20

Figure 4.11 XE(Y)

C. PHASE NOISE PDF COMPUTATION

A more traditional and complete analysis of the bit error probability

for noncoherent 2FSK requires the determination of the actual

probability density for X(y). This is a formidable problem, and to this

point in time, only rough approximations to the density have been

obtained.

The first approach to solving for the PDF of Xwas put forward by

(Foschini, Greenstein, and Vannucci, 1989) and consisted of expanding

the RV Xin a series expansion, retaining the linear y term

X, =I - yz'Dz (4.14)
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where z is an infinite dimension vector of zero mean, unit variance
Gaussian random variables, and D = diag{di, }, dii = 1/(in)j. Examination

of XL reveals that it can take on negative values, and since X represents

a power fraction (with permissible values 0 _ X(y) •_ 1), this characteristic

is obviously unsatisfactory.

What is required then is an approximation to X, call it XA, that is

easy to work with analytically, has a range of values 0 __ XA(Y) •_ ' for all

nonnegative values of y, and closely matches the behavior of the actual

variable X. Another way of stating the last requirement is that the

moments of the approximation XA match those of X. Such an

approximation was formulated in (Azizoglu and Humblet, 1991), and is

given by

XA(Y) = exp(iyzTDz) (4.15)

where z D are as given above. The moments for the approximation are

given as

EX = ,(4.16)

for all real t Ž> -,r'/2y.

Given the moments, the PDF of XA may be determined through a

Gaussian quadrature technique. The general technique is due to

(Hamming, 1973), and it is believed that the application of this technique

to this class of problem is new. Consider the Gaussian quadrature

problem
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b N

f:K(x)f(x)dx I Wkf(Xk)
k=l

K(x) 2! 0 (4.17)

a:_x:5b

If K(x) represents an arbitrary probability density function of the

random variable x, the moments of x are given by

i,=Efx'} = rK(x)xtdx

N

I wXkx, (4.18)
k=1

S isi

where for an N dimensional Gaussian quadrature, t = 0, 1, ... 2N - 1. Now

define the following Nt' order polynomial with roots Xk
7r(X) =- (X-- XI)(X -- X2) ...(X-- XN)

= xN + cj_1 x N-I + . +c(4.19)
CN =I

Next multiply each t"O moment equation by c, giving
N

oco = I WkCo

k=1

N

MrIC = I WkXkCI
k=1

N
1~2: WkXk22
k=1

N (4.20)
WkXN CN-1

kIl

N

MN Wk k
k-I
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and add them all together

MfC, + MN,• I wI x A
t(-o t-0 k-l

N N

wk x"c, (4.21)k~l t=0

N

YW, Wk (Xk)

= 0

Now multiply the equation for the (t + l)!!' moment by c,
N

mIC. = Yw,,kXCO
k=I

N

MIC 1 = "WkX - C1
k=I
N

m/+2C 2 = IWkXk'-2 C2

k=l

N (4.22)XN+I- IC -
MN-1-ICNI j Wk< k NI

kI

NraN+ = •W kN+I

k-I

and add them together

N-mtI- J~NI NImn+,c, + MrN4l I W t~l

\t=o t:O k=I

N N
WkX kI ,C

k=1 tX0xc (4.23)

N

I WWkXk7r(Xk)
k=I

=0

for all 1 = 0, 1, ... N - 1. Observation of the left side of the above

equation indicates that it forms a system of N equations in N unknowns
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when the moments m• are known. In matrix notation, the system

becomes

"10 MI ... mN_, •cO -MN

mI M2 ... M N CI = -m1 - (4.24)

mNil MN "nmN 2 jLCN-j[ -[m2N,1-

With the coefficients of the polynomial ir(x) in hand, the roots xk can be

numerically computed. This operation will not be considered here.

Recall the equation for the moments, repeated here

m, =E{x'}= J"K(x x'dx

N (4.25)

k=l

This last equation can be put into matrix form as

x,- x 2  ... x w

Examination of the integral and summation equations for m,

indicates the correspondence to the first order of wk and K(x)dx, such

that

Wk = K(Xk)Axk

K(xk) = Wk (4.27)
Axk

In essence, this technique generates a rectangular approximation

to the integral of K(x). A better (smoother) method of extracting K(x)

from the computed wk and xk is to do a spline interpolation on the data
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set, and then adjust the wk such that the integral of the spline

approximation equals 1, since any valid probability density function

must integrate to 1.

Implementation of this technique is hampered by the ill

conditioning of the matrix equations and root finding operation.

Computation in standard 16 place arithmetic limits the Ndimension of

the problem to about 8. The use of a symbolic algebra system with

arbitrary precision allows a larger N dimension to be used. The results

of Figure 4.12 were generated using the program Mathematica with

N = 16 and 128 digits of precision. Comparison with the results of

(Azizoglu and Humblet, 1991) show equivalence. With suitable

computing resources, the solution for a given N could be obtained

symbolically.

I I

0.0 0.1 0.4 0.6 0.8X

Figur( 4.12 Probability Density Function of XA (y)
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D. PERFORMANCE WITH PHASE NOISE

The density obtained for XA(y) in conjunction with Pb,,, from (4.10)

yields the error performance for noncoherently demodulated 2FSK

Pb 0 P•,,fx,.A (x)dx (4.28)

Performance curves for several values of y are shown in Figure 4.13.

The values for SNR represent the signal SNR, since it is assumed that one

data bit is represented by one signal bit.

The impact of increasing data rate can be explored through Figure

4.13. Starting at a point on a curve that represents a particular system,

increasing the data rate shifts the operating point to a curve at lower Y,

at a lower SNR that represents the reduced energy per bit that results

from higher data rates. For example, beginning at y = 4, a 10-i error rate

corresponds to a SNR of 32 dB. Doubling the data rate results in a drop

in SNR of 3 dB to 29 dB, on the y = 2 curve. This point corresponds to an

improved bit error rate of 5x10-7. Also consider starting at y = 1/2, 10-9

bit error rate at 18 dB. Doubling the data rate results in a worse bit error

rate of 10-7 on the y = 1/4 curve at 15 dB. In general, for relatively large

y, data rate increases lead to better error vs. SNR performance, while the

converse holds at low y.
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V. CODED PERFORMANCE

A convolutional code is generated by passing an information

sequence through a linear shift register, and combining the shift register

cells algebraically into several output channels. The diagram of Figure

5.1 shows a general implementation of a convolutional coder.

A. CONVOLUTIONAL CODER

Most generally, a sequence of k information bits enters the decoder

at stage I, and is subsequently shifted through the register in k bit

blocks. The total number of blocks, including the input block, is L.

There are a total of Lk individual cells. An actual implementation would

require (L - l)k memory cells, since the first stage is available directly

from the coder input. The possible contents of the (L - 1)k coder

memory cells are termed the states of the coder. There are 2"'

possible states in this coder. The input and memory cell contents

(hereafter termed the coder cells) are algebraically combined via the n

code generators, which are usually described as generator polynomials.

More generally, the generators may be described as a sequence of Lk l's

and O's. Where the generator is I indicates that the corresponding coder

cell is connected to the output cell represented by this generator.

Mathematically, the output of each generator is the inner product
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stage
length k (Input stage) stage 2 stage L

coded input

generator polynormials

m1duhn 2 adders + +.

Figure 5.1 A convolutional coder

Modulo-2 of the generator and coder cells. The coder maps the k input

bits onto n output bits. The code rate of the code is
k

R, = .1)
n

A convolutional coder is completely specified by the parameters L,

k, n, and the generators, which are commonly given in octal. The

mapping of the octal representation to binary is shown in Table 5.1.

TABLE 5.1

Octal Binary

0 000

I 001

2 010

M11

4 1o0

5 101

( 11o

7 111
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The value of L is termed the constraint length of the code. The

value of Lk provides a measure of the complexity of the coder.

From observation of the coder in Figure 5.1, it is obvious that bits

shifted out of the shift registers have no effect on the coder output. The

constraint length therefore puts a limit on the length of the coder's
impulse response (the response due to the input sequence {1,O,,0,...}

with initial state al-zero), that being the product Lk. The impulse

response h {h,h, ... ,hLkI of the coder is analogous to that of any other

linear time invariant system. For any input sequence i = Iil,, iz}, the

output of the coder will be the convolution Modulo-2 of i with h.

B. REPRESENTATION OF CONVOLUTIONAL CODES

There are three equivalent methods of describing a convolutional

code: the tree diagram, the trellis diagram, and the state diagram. Each

will be important to understanding the coder and describing its

performance. The following example is taken from (Proakis, 1989).

Consider the L = 3, k = 1, n =3 coder shown in Figure 3.2. The

generator sequences are given as

g, = {1,o,o}

92 ={1,O,1} (5.2)

9 11,1,1}
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Figure 5.2 Coder for L = 3, k = 1, n = 3 code

In octal, these generators would be given as (4,5,7). The theory of

generators frequently leads to the expression of the generator sequences

as polynomials, in which case
g1(x)= 1

g2(x) = 1 + x( (5.3)
gj(x) = 1 + X + x2

First consider the tree diagram for this code shown in Figure 5.3.

This diagram was constructed by starting at the all-zero coder state, and

describes the outputs and resulting coder states for a sequence of

inputs. The upper branch out of each coder state represents the

transition due to an input bit I, the lower branch to a bit 0. Starting

from an all zero loading, if a bit I enters the coder, the state transitions

to 10. The output of the coder is 111. If another I enters the coder, the

path through the tree follows the lower branch again to state 11, and the

resulting output is 110. At the input to each node in the figure, the

upper number represents the coder output, and the lower number

represents the coder state. The letter A represents the state 00, B
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represents 01, C represents 10, and D represents 11. The upper branch

out of a node is always the zero input, and the lower branch is the I

input. This process continues for each input bit, resulting in an ever

expanding diagram.

Examination of the tree diagram shows that the pattern of states

and outputs begins to repeat after the third branch. Since there are a

finite number of unique combinations of paths (combinations) of input,

output, and coder state, the identical points on the tree diagram may be

merged together. Referring to Figure 5.3, the boxed grouping of states

may be merged into a single representation. When this is performed for

all repeating paths, the trellis diagram results. The trellis diagram is

most useful for understanding the paths of received sequences through

a decoder. Figure 5.4 shows the trellis diagram for the L = 3, k = 1, n = 3

code. In the trellis diagram, the upper branch out of a node always

corresponds to a 0 input bit, and the lower branch to a 1 input bit. The

annotation next to each branch is the output sequence.

The final representation of interest is the state diagram. The state

diagram is a signal flow graph showing the possible states and the

transitions between them. The state diagram of Figure 5.5 shows

transitions due to a I bit as dashed lines, and those due to a 0 input as

solid lines.
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merged in
trellis diagram -* ....

00 000

A-A

0001

000 D

Oil
001 A

B 100
III C

C 10010

SD 101

0 input D

o000

I input A II11
00O 1 C

C 11,0
111 D

0I I
Legend 010 I A

A-00 B I ! 0

B-01 output 110 C
C-10 state :010
D-11I D 101 R

D I 101

D

Figure 5.3 Tree Diagram for L =3, k = 1, n =3 code

40



000 000 000 000 000
A

Oil ol o io l

B001 001 00

B0 00 00 00

C.

DO 101 •101 101

Steady State

Figure 5.4 Trellis Diagram for L 3, k = 1, n = 3 code

A B,

010

100

"'---_~ ~ ..... -_o ..... -

Figure 5.5 State diagram for L - 3, k = 1, n = 3 code
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The example depicted is for the L = 3, k = 1, n = 3 code. For any rate

k/n, constraint length L code, there will be 2(L-11k possible states, each

with 2I branches entering the state, and 2k branches leaving the state

(after steady state is reached in the trellis).

The state diagram representation provides a mechanism to develop

a code transfer function using standard signal flow graph techniques.

The transfer function of the code provides a mechanism to determine

the distance properties of the code, and to determine the error

conditions that go uncorrected by the code. Since the codes being

considered are linear codes (the shift register and Modulo-2 adders of

the coder are linear processes), the transfer function may be constructed

from the zero state to the zero state without any loss of generality. Each

branch of the state diagram may be labeled with a gain function JNwDWo,

where w, is the weight of the input sequence causing the transition, and

wo is the weight of the resulting output sequence. The J term serves to

keep track of the number of state transitions. After labeling each

branch, a set of simultaneous equations can be constructed and solved

for the overall transfer function. Keeping in mind the explosion of states

and inputs for large values of L and k, it can be seen that the

determination of the transfer function can be difficult. The Appendix

contains a more detailed discussion of the procedure, as well as a

computer program for use with a symbolic algebra system to eliminate

the tedium of these calculations. The state diagram with branches

annotated according to the above convention is shown in Figure 5.6.
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JND JD• JD

Figure 5.6 State diagram in transfer function form for L = 3, k = 1, n = 3

code

The system of gain functions for the example code is as follows:

XB = JDXC + JDXD

XC = JNDfXA Au, + JNDXB (
XD = JND2XC + JND2 XD

X,. = JD2 XB

The self loop at state A is ignored in this formulation since it contributes

nothing to the distance properties of the code. The system of equations

is solved for Xa./ IXAo., giving

T(D,N,J) = (5.5)_ JND2_-J2ND2

When this transfer function is expanded in Taylor series, the transfer

function becomes
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T(DN,J) = J3 ND6 + J 4N 2D 8 + JsN3D°0 + ... (5.6)

This form reveals the distance properties of every erroneous,

uncorrectable path through the decoder. The first term in (5.6) reveals

that the minimum distance of the example code (the minimum exponent

of D), is 6. A full explanation of the individual components of each term

follows. The explanation is based on the assumption that the all zero

code sequence is the transmitted sequence.

J Term: The exponent of J is the length of the information sequence

with a coded representation that departs the all-zero state and

subsequently remerges with it. Examination of the trellis

diagram of Figure 5.4 confirms that for the example code, this

path length is 3.

NTerm: The exponent of Nis the number of l's in the true information

sequence for the erroneous path. For the example, the

erroneous path corresponds to the true information sequence

100, as can be determined from the trellis.

D Term: The exponent of D is the distance of the received coded bit

sequence from the all zero sequence. For the example this is 6.

The coded sequence for the example code is 111 001 0 11.
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C. VITERBI OPTIMUM DECODING ALGORITHM

At this point, the tools required to discuss the optimum decoding of

convolutional codes are in hand, and discussion will shift to this topic.

The optimum decoding technique is called the Viterbi decoding

algorithm. The path of quickest comprehension is by example, so the

previous L = 3, k = 1, n = 3 code will continue to serve this function.

Consider the trellis diagram from Figure 5.4 and two of the possible

paths through it

ro 10{o,o,o,o,o,o,o,o,o} (5.7)
r, j= L '''''l

The path ro is the topmost path, and path r, is the path that

remerges with the all zero path after 3 information bits. One method of

decoding is to periodically take a sequence of coded bits, and determine

the distance between the sequence and every possible trellis path

corresponding to the sequence length. The output of the decoder would

be the information sequence corresponding to the code sequence closest

in distance to the received sequence. The measure of distance can be

accomplished in several ways. If a hard decision is taken for each bit as

to it being a 1 or 0, the distance metric is the Hamming distance. The

Hamming distance is defined for binary sequences as the number of

places in which the two sequences differ. The sequences ro and rj have a

Hamming distance of 6. If the received bits are quantized into a number

of levels without taking a firm decision as to each bit being a I or 0, the

Euclidean distance between the quantized bits becomes the metric. This
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approach is called soft decision decoding, and generally yields superior

performance to that of hard decision decoding, at the cost of greater

system complexity. This thesis will hereafter concern itself with hard

decision decoding for the reasons mentioned in the introduction.

Continuing with the example, consider all paths that branch from

the state at which ro and r, merge. Two sets of paths will be created, one

with ro at the beginning, and one with r, at the beginning. The metrics

of the extended paths will be added equally to the metrics of r0 and rj,

preserving the difference between the metrics of r, and r,. This implies

that the total number of possible paths to keep track of can be split in

two at the point where r0 and r, merge by eliminating the path with the

higher metric up to that point. Therefore, at every state where two

branches merge, one entering branch can be discarded based on its

metric statistics up to that point.

Now consider a very long trellis with a corresponding received

sequence. The rightmost bits are the most recent inputs to the decoder.

At every stage, when two candidate paths merge at a state, only one path

survives. Eventually, a stage will come when only one path back to the

beginning of the trellis survives. This path represents the maximum

likelihood estimate of the actual transmitted data and would be the

output of the decoder. Since the current coded data input is further to

the right of this stage, a time delay for the decoding process is implicit.

Figure 5.7 shows several steps through the procedure for the

L = 3, k = 1, n = 3 example code. The received sequence for this example

was {101 000 100 000 000 000 000}. For the case when there is a tie
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Figure 5.7 Decoding process for L = 3, k = 1, n = 3 code

between path metrics merging at a state, the tie is resolved in favor of

the uppermost incoming branch. Each node in Figure 5.7 is labeled with

the path metric up to that point.

Examination of Figure 5.7 shows how two candidate paths quickly

appear. Eventually, the lower branch is eliminated, and the output

sequence becomes {0,0,0,0,0}. The number of steps required to achieve a

single survivor is a random variable. In practice, this number of steps is

limited to a practical number, and the path with the lowest metric at the

47



limit is the output path. Refering to Figure 5.7, an appropriate limit

would be 5 steps.

The process described above appears to be costly in that a large

number of possible paths and computed metrics for each path must be

kept in memory. Specifically, for a rate k/n constraint length L code, the

decoder must keep track of 2 "L-I"' surviving paths with corresponding

path metrics. At each stage, since there are 2k entering branches at each

state, a like number of branch metrics must be computed and added to

the appropriate path metrics. These paths are then compared, and the

smallest one kept. All of these mathematical operations and the memory

required to store the possible paths has limited the application of this

technique to codes of relatively short values of Lk, and lower data rates

than is achievable through more conventional block coding techniques.

The use of a soft decoding scheme increases the memory required to

store the metrics, depending on the number of quantization levels, and

the computation of branch metrics requires squaring and square root

operations instead of simple addition operations, so even more

restrictions apply to soft decoding. Nevertheless, as memory becomes

cheaper, and logic speeds higher, the gap between capabilities of block

and convolutional codes should decrease.

D. CODED PERFORMANCE ANALYSIS

When hard binary decisions are taken on the incoming coded data

before decoding, the communications channel is called a binary

symmetric channel. In the Viterbi decoder discussed above, errors in the
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received coded data manifest themselves in incorrect path metrics. As in

the determination of the code transfer function, it may be assumed that

the all zero codeword is the actually transnitted codeword without loss

of generality. Recall the information that the transfer function provides

about incorrect paths that remerge with the all zero path Each one of

these (infinite in number) paths has a distance d associated with it. In

this case, these distances are each paths' distance from the all zero code

sequence. It is crucial to realize that an error in a received digit where

the correct and incorrect paths are the same has equal effects on the

metrics of both, and can therefore be ignored. It is this feature that

permits us to consider no more than d errors even though more than

this number could occur on a path. If a particular distance d is an odd

number, the all zero path will be selected as the surviving path at the

particular node if less than (d + 1)/2 errors occur in the coded sequence

up to that point. If (d + 1)/2 is an even number the two paths will have

equal metrics, and the probability of making the proper choice of

survivor is 1/2 when this number of errors occurs. The probability then

of the incorrect path surviving is a binomial probability function

S- d odd

P(d)pk (I_-p)d-k+ld2)Pd --p d even

An upper bound can be found for P2(d) as

P2(d) < [2 p-(l -- ] (53.9)
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The value of p in the above equations is the channel error probability.

The above error probability is that for a single path. In general,

there are ad possible paths that merge at the particular node of the

trellis. There also is an infinite number of possible merging distances

after the initial dfree. These paths are not independent of each other, but

the assumption that they are yields a pessimistic estimate for the

combined error probability

P< aP(d)(5.10)
d=dfr

This technique is termed the Union Bound Approach. It ignores the

intersections of the different paths.

The values of ad may be obtained from the transfer function

T(D,1,I). Substituting the approximation for P2(d) into the equation for

path error probability yields

P, < T(D,IJ)j• ,l-D (5. 1)

The statistic of greatest importance is the information bit error rate,

which may be obtained as follows. When an incorrect path is chosen, the

information bits in that path will differ from the transmitted

information. Since the all zero information path was the one

transmitted, the number of errors will be the number of l's in the

incorrectly chosen path. The information bit error probability for a

single path is the product of the path error and the number of l's in the

erroneous information sequence. Considc, the transfer ftumction in the

following form with the a,, representing the number of path. of weight

d with information weight w,,
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T(D,N,1) = I Ddaad, N-'
d- df, , (5 .1 2 )

d=dfree

The mean number of l's in the information sequence corresponding to a

path is given by f(d). The information bit error probability for all paths

of a given weight may be over bounded by the mean

Pb < f(d)Pe
< .af(d)P,(d) (.3

d=df,.,,

Recognizing that
T(D, N)= .ajDdf(d)Nf(•)-I (5.14)

dN dzdr,,,

and employing the bound on P,(d) of (5.9), the bit error probability

becomes

P6 < dT(D,-N) (5.15)
,dN ,ýN'.D=2VI(I- p )

This expression for P. is the expression that will be used to compute the

performance of the laser phase noise contaminated binary FSK system

described earlier.

E. CODES STUDIED

Four codes will be considered. The first code is the R = 1/2, L =3

code with generators (in octal) of (-,7) (Odenwalder, 1970). The transfer

functions for this code are
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T(DNJ) = D5NJ3 (5.16)

-JDNJ2 - DNJ

dT(D,N) = Ds

dN N=1 (2D - 1) (5.17)

= Ds +4D6 + 12D 7 +32D 8 +80D 9 +192D'° +

The next code is the R = 1/2, L = 4 code with generators (15,17)

(Odenwalder, 1970). The transfer functions are

T(D,N,J) = D 6 j 4 N(D+JN-D 2 jN) (5.18)
1 - DIN - DJ2 N - D3J3N + D 2J3 N2 -

D 4j 3N 2 - D 2J 4 N 2 + D 4j 4 N 2

dT(D,N) = 2D6 -D 7 -2D 8 +D 9 +D"

dN N=1 (D3 + 2D-1) (5.19)

= 2D 6 +7D 7 +18D 8 +49D 9 +130D' 0 +333D"+

The third code is the R = 1/4, L = 3 code with generators (5,7,7,7)

(Larsen, 1973) and transfer functions

j3
T N JN(D" + D'0 JN - D 14 ,w)

T(D, J, N) = -S("+D°N lj/ (5.20)

-1- D3J'N - D3 J2N - D2J 3N 2 + D 6J 3N 2

dT(D,N) 2D'° + D" - D13 - 2D14 +D17

dN N=1 (D6 - 2D3 - D2 + 1)2  (5.21)

= 2D'° +iD" +4D'2 +9D13 +8D14 +25D's

The final code is the R = 1/4, L = 4 code with generators (13,15,15,17)

(Larsen, 1973) and transfer functions

T(D, J, N) D13J 4N(I + DIN - D 3JN + J 2N2 - D4 j 2N 2)

-1- D3jN - D 3J 2N - D5J 3N + D6J3 N2 - D8J 3 N 2 - D6J 4N2 +

D 8J 4N 2 - D 7J 4N3 + D' J 4N 3 - D5J 5 N 3 + D 9J5 N 3
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(5.22)

4D"3 + 2D14 _ 6D 1 6 - 5D17 + 2D'9 + 6D 20 +

dT(D, N) D - 2D 2 3 - 2D24 + D27

dN N== (D" + D9 - D- _2D' - 2D 3 + 1)2 (5.23)

= 4D"3 + 2D14 + 10D16 + 3D17 + 16D'8 + 34D 19

These codes are of relatively short constraint length; the current

standard in commercial production for microwave radio use is a

constraint length of 7. The intended application for these codes is at a

high data rate, so it seems prudent to choose codes that offer lower

complexity of implementation.

F. CODED PERFORMANCE

The computation of information bit error proceeds as outlined

above, realizing that the value of p comes from the development for

uncoded phase noisy binary FSK. When coding is employed, since the

signal bit duration T decreases by the factor R, the signal to noise ratio

also decreases by R. Also, and most importantly, the value for y

decreases by R. The error performance curves based on uncoded

yvalues of 1, 4, and 16 are shown in Figures 5.8 through 5.10. To

facilitate direct comparisons with the uncoded system, the SNR values

are with respect to the uncoded system. The actual signal SNR is

reduced by the code rate.

The traditional additive white Gaussian noise results for coding

show that code constraint length is the dominant factor in improved

performance since larger L produces a greater dfree. The results shown in
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Figures 5.8 through 5.10 show that code rate is the dominant

performance factor in the presence of phase noise. This code rate effect

comes about from the replacement of a single information bit, with its

mostly non coherently integrating latter portion, by several code bits,

which integrate more coherently.

Figures 5.8 through 5.10 show an extremely large coding gain.

Performance of this quality enables the realization of practical

heterodyne systems, operating at 50 - 100 Mbps per wavelength channel

employing the new high speed Viterbi (hard decision) decoders. With

current laser diode sources exhibiting 10 - 100 MHz linewidths, a 200

Mbps signal rate results in 1 < y < 4. It should be stated that the bounds

employed in the coded bit error are somewhat loose bounds, resulting in

a pessimistic coded error rate.
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VI. CONCLUSION

The comments made in the introduction about the tradeoffs that

arise from the use of coding can now be considered in more detail. It

seems clear that in the absence of any constraints on signal rate and

decoder performance, coding offers superior performance. Given

constraints, the choice to use coding may become less clear-cut.

If higher data rates are not required, and the source laser and

decoders support the higher signal rate coding requires, then coding

offers significant performance gains as compared to a system that

increases the signal rate without using the increased data rate available.

For the uncoded system, this is equivalent to having unused data

capacity on the link. Table 6.1 summarizes the required signal SNR for

given bit error rates and y values employing uncoded, coded, and

uncoded signal-rate-increased systems. The y values are referenced to

the uncoded system.

A. HIGH DATA RATES VERSUS LOW DATA RATES

Experimental coherent systems have been run at modulation rates

well over I Gbps. The fastest decoders are currently limited to 200

Mbps. It will be assumed that the combined laser linewidth of source

and local lasers is 100 MHz or less. A data rate of 200 Mbps corresponds

to a y of about 4. The performance of an uncoded system is therefore
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TABLE 6.1. SIGNAL SNR REQUIRED

y=l y= 4  y=16

System 10-1 10- 1- 10- 10,- 10-9 10- 10-7 10-1)

Uncoded 16 19 23 32 - -

L=3, R=1/2 Code 11 12 14 14 16 19 24 34

L=3, R=1/4 Code 8 9 11 9 10 11 12 14 16

2x Signal Rate 14 16 18 21 32 - - - -

4x Signal Rate 13 15 17 16 19 23 32 - .

quite bad. In this case, a signal rate increase is the only option, unless

one considers multiplexing coded systems. The total power required in

the multiplexed systems to achieve a given bit error rate is less than that

required in the increased signal rate system, but at significantly greater

complexity. In general, the choices to be made for high data rate

systems are not easy ones.

For low data rate systems, the choice does appear to be easy. So

long as a decoder for the data rate desired is available, coding offers a

solution to the phase noise problem.

The critical components in all this are the source and local lasers. It

is a very high priority within the communication industry to develop the

perfect laser for coherent communications. Work is proceeding slowly

toward this goal. Semiconductor lasers offering linewidths less than 10

MHz, and modulation rates higher than 500 MHz are currently

advertised.
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Given a perfect laser, coding will still find application to combat

other sources of noise in communication systems. The original

applications of coding were to combat additive white Gaussian noise in

communication channels. As long as economical decoders operating at

high enough data rates are available, coding will find application.

B. COMPARISON WITH DIRECT DETECTION

Since it has been established that a coded coherent system is at

least theoretically able to offer excellent performance, it is worthwhile to

consider how well such a system compares to the traditional direct

detection system. The first step is to consider the error rate versus SNR

of the direct detection system (Keiser, 1991).
1 .1 •--b •

Ph 1erf({ 2N 0  (6.1)

This performance is plotted in Figure 6.1.

The direct detection error performance is roughly equivalent to

uncoded coherent 2FSK with y < 1. When comparing with the coded

2FSK systems, it is seen that the R = 1/4 codes perform as well or better

for all y • 16, and the R = 1/2 codes perform as well or better for all y < 4.

It appears as though the 10+ dB receiver sensitivity advantage of

coherent systems may now be realized in the face of phase noise.

Coding may be employed on the direct detection system, but the

tremendous gains of the coherent system will not be realized, since the

main factor in that effect is the effective reduction in y brought about by
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system are likely to be equivalent to the well-known AWGN channel

results (about 6 dB), so the phase noise contaminated coded system still

offers superior performance.

-46 "

-10~I1__________-

-12
S 10 is 20 25 30 Ts

SNR (dB)

Figure 6.1 Direct Detection Pb

C. AN APPLICATION AND FUTURE RESEARCH

This thesis has shown that good performance is attainable at low

data rates with a coded coherent binary FSK system. An attempt has

been made to point out at the pertinent places some of the

implementation issues facing the employment of such systems. A

hypothetical application of such a system will now be discussed.

There are military applications of fiberoptic links that have been

conceived not so much for the high data rates available, but for the light
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weight, high tensile strength, and RH immunity aspects of fiber.

Consider a link between a low value (or expendable) asset and a receiver

station. Consider a medium range system (50 Kin) that requires a

relatively low data rate (less than 50 Mbps). There may also be a link

from the receiver station to the low value asset (LVA), but it is not of

interest (it would make use of the same fiberoptic cable). What is

required in the LVA is a simple, inexpensive, low power consumption

optical transmission system. The cost and complexity of the receiving

station are of secondary importance.

Before deciding whether a coherent or direct detection system

should be used, consider the following. The range requirement and

desire for the lowest power system mandate the use of single mode fiber.

Chromatic dispersion effects also need to be minimized, dictating the

use of a laser diode source as opposed to an LED (Keiser, 1991, pp. 326-

327). As a result, the two major cost and simplicity factors favoring a

direct detection system are no longer part of the equation.

The choice between coherent and direct detection systems now

becomes whether the complexity and cost of the coherent system justify

the better performance. Earlier it was stated that the frequencies of the

source and local oscillator lasers fluctuate with temperature and small

drive current fluctuations. If the controllers for these parameters can be

removed from the LVA, then most of the complexity problem within the

LVA disappears. To remove these components may require a special,

adaptive local oscillator laser and demodulator section within the
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receiving station, and the effects on performance of such a scheme

requires further investigation.

Polarization mismatch between the source and local lasers is also a

factor. In general, any twisting or bending of a fiber will alter the

polarization of theŽ signal. Receivers that are insensitive to polarization

also require further investigation.

Current single mode fibers offer attenuation's as low as 0.3 dB/Km.

This low attenuation, coupled with the sensitivity advantages of coherent

systems, offers tremendous increases in the operational range of systems

that employ this concept of operation. Given that the hurdles of phase

noise, frequency stability, and polarization sensitivity can be overcome,

entirely new classes of weapon and sensor systems may become reality.
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APPENDIX

The following Mathematica codes (Wolfram, 1992) implement the

formulations for:

The Gaussian quadrature method for the determination of the

phase noise pdf

Code transfer functions.

A. GAUSSIAN QUADRATURE METHOD FOR PDF DETERMINATION

FROM MOMENTS.

The first section defines the moments and structure of the matrices

involved.

u[g_,i_]:=Sqrt[ Sqrt[2 g iJ/Sinh[Sqrt[2 g i]]]

MA~g_ ,n_ ] :Tab1e[u[g,j~k], {j,0, n-1}, {k,0,n-l}i;

MB [g_, n_] : -Table [-u [g, k], {k,n,2n-l}] ;

Xtn_ ]:=Table[x^i,{i,0,n}];

MD[xkList]:=Table[xk^i,{i,O,Length[xk]-l)}];

ME[g_,n_] :=Table[u[g,k], {k,0,n-l}];

The next section computes the xk and wk
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prec=128; ... for 128 digits of precision

n=16; ... for N=16

g=1; ... for y=1

A=N [MA [g, n] , prec] ; ... Remove the N [o,prec] statements for symbolic

answers

B=N[MB[g,n],prec];

CC=LinearSo1ve [A, B];

AppendTo[CC, 1];

poly=CC XIn|;

XK=x /. NSolve[poly==0,x,prec ; ... use Solve for symbolic

answers

DD=N[MD[XK],prec];

EE=N[ME[g,n] ,prec] ;

WK=LinearSolve [DD, EE];

F=Transpose [ {XK, WK}];

The data generated by the code above is next exponentially

interpolated (giving straight lines on a log plot), and an

InterpolatingFunction object is obtained. This object is numerically

integrated to find its norm, and finally divided by its norm, so that it

integrates to 1.

Fl=F /. {a_,b_ ->{a,Log(b]};

Fi=Interpolation[Fl[g],InterpolationOrder->l];

norm=NIntegrate[Exp[Fi[x]], {x, 0,1)];
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F[g,x_]:=Exp[Fi[x]]/norm; ... The final PDF

Plot[F[g,x],{x,0,1}]; ... PlotPDF

B. DETERMINATION OF CODE TRANSFER FUNCTIONS

Algorithm

1. Separate the all zero state into two states, xi and x, , such that

transitions to the all zero state are attached to the xf state, and all

transitions from the all zero state are attached to x,.

2. For every possible state (there will be 2(L'-k of them), determine the

coder output sequence that occurs for every possible input sequence

of length k (there will be 2k of them). Recall that the coder output

sequence is the dot product of the generator sequence with the

length Lk input and shift register sequence (mod-2). Also determine

the resulting state for the given input sequence.

3. Connect the original state to the resulting state with an arrow, and

annotate the connection by the gain functional LNwDW° where w1 is

the weight of the input sequence, and w, is the weight of the

corresponding output sequence.

4. Keep track of these transitions and path gains, and form a system of

equations that relate each state as a sum of other states with

corresponding gains. For given L and k, there will be 2(L -)k equations

in 2('-"' + I unknowns, since the all zero state was split into the states

x, and xf. Each equation should be in the form
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Xj = gj1Xi1 + gj2xj2 + + gj2 Xj2' where the subscripted states and

gains refer to other states. In other words, each equation has 2k

components.

5. Solve the system of equations by eliminating all states except for xi

and xf, and solve for the ratio xf/x 1 .

It is obvious that the task of finding the transfer function for typical

codes is impossible without the aid of a computer. Even with a symbolic

math system, the problem is daunting for large values of Lk. The above

algorithm has been implemented as a Mathematica program, and used to

determine the code transfer functions employed in this research. The

code is listed below.

The code is given as a Mathematica Function, the assumed inputs

are the values of L, k, and the generators in the form of a matrix with the

rows representing the generators in binary form.

BinaryConvCodeTransFunc[LInteger, KInteger,

generators ?MatrixQ]j-

Module[{ },

(* L is constraint length *)

(* K is input block length *)

n=Length(generators];

(* n is number of generators *)

numstates=2^ (K*L-K);

ls=numstates+l;

M=2 A K;
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xsol=Table[ {O}, ls}1;

al1states~=Table I

Take[JointTabiejUb,{K,'(L-,-',/JiV

IntegerDigits Ii, 2]],

li,0, numstates-l }1;

allinputs=Table[

TakefJoini[Table[0, {K}],

IntegerDigits [i, 21],

-K],

(i, 0,M-l } ;

For [m=1,In<=M,M++,

input=allinputs [(n]];

For [i=l, i<=numstates, i+÷,

state~al1states [[1]];

output=Table[O, {n}];

bigstate=Flatten [Prepend [state, input]];

newstate=~Take~bigstate,K* (L-1) 1;

For [j=1, jK=n, j++,

output[Iii] ]

Mod[Apply[jPlus,bigstate*generatorsf [ii11,2];

wi=Apply[Plus, input];

wo=Apply([Plus, output] ;

{{k}}=Positionfallstates,newstate];
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If [k!=1,

AppendTo[xsol(I[kl],JJ NN~wi DD~wo x~i] ]];

If[k==1 && i!=l,

AppendTo(xsol[[ls]],JJ NN~wi DD~wo x[il ]1;

xsol=ApplyjIPlus,xso1, {1}];

solnset=Table[x[i]==xsol[[iJ],{i,2,ls}];

elims=Table[x[ij,{i,2,numstates}];

Canceji (x[ls] /. Solve[solriset,x[ls1,elirns])/x[1]]
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